
XML in an Adaptive Framework for Instrument Control1,2,3 
 

Troy J. Ames 
NASA Goddard Space Flight Center 

Advanced Architecture and Automation Branch (588) 
Greenbelt, MD  20771 

301-286-5673 
Troy.J.Ames@nasa.gov 

 
 
Abstract—NASA Goddard Space Flight Center is 
developing an extensible framework for instrument 
command and control, known as Instrument Remote 
Control (IRC),  that combines the platform independent 
processing capabilities of Java with the power of the 
Extensible Markup Language (XML). A key aspect of the 
architecture is software that is driven by an instrument 
description, written using the Instrument Markup Language 
(IML). IML is an XML dialect used to describe interfaces to 
control and monitor the instrument, command sets and 
command formats, data streams, communication 
mechanisms, and data processing algorithms. 

                                                           
1 U.S. Government work not protected by U.S. copyright. 
2 0-7803-8155-6/04/$17.00© 2004 IEEE. 
3 IEEEAC paper #1175, Version 2, Updated December 3, 2003 

 
The IRC framework also provides the ability to dynamically 
discover and communicate with other devices anywhere on 
a network in a peer-to-peer manner. To enable a dynamic 
discovery and configuration capability for a collection of 
devices, each IRC instance (referred to as an IRC Device) 
can advertise and publish information about themselves on a 
virtual network. For scoping and security the virtual 
network can be divided into virtual peer groups. Devices 
can join or leave a virtual peer group and thus join or leave 
the instrument control environment of IRC. An IRC Device 
can advertise and publish several public IML interface 
descriptions. A device may want to split up its public 
descriptions (commanding vs. data) or publish more than 
one version (novice vs. expert). This simple capability of 
dynamically publishing and subscribing to interfaces 
enables a very flexible self-adapting architecture for 
monitoring and control of complex instruments in diverse 
environments.  
 
Several astronomical instruments are working with the IRC 
development team to develop custom components for IRC 
to control their instruments.  These instruments include: 
High resolution Airborne Wideband Camera (HAWC), a 
facility instrument for the Stratospheric Observatory for 
Infrared Astronomy (SOFIA); and Submillimeter High 
Angular Resolution Camera (SHARC II), an operational 

facility instrument at the Caltech Submillimeter Observatory 
(CSO). 
 TABLE OF CONTENTS 

....................................................................... 
1. INTRODUCTION........................................1 
2. INSTRUMENT MARKUP LANGUAGE ........2 
3. FRAMEWORK ARCHITECTURE ...............3 
4. DISTRIBUTED ARCHITECTURE ...............5 
5. DATA ANALYSIS PIPELINE ......................7 
6. SCRIPTING ...............................................8 
7. THE VISION: THE FUTURE OF IRC ........9 
8. SUMMARY..............................................10 
REFERENCES .............................................10 
BIOGRAPHY ...............................................10 
 

 
1. INTRODUCTION  

NASA Goddard Space Flight Center’s Instrument Remote 
Control (IRC) project is an ongoing effort led by the 
Advanced Architectures and Automation Branch (Code 
588). The IRC project supports NASA’s mission by 
defining an adaptive framework that provides robust, 
interactive, distributed control and monitoring of remote 
instruments. The IRC framework will eventually enable 
trusted astronomers around the world to easily access 
instruments (e.g., telescopes, cameras, and spectrometers) 
located in remote environments such as the South Pole, high 
mountaintops, or a Boeing 747 airborne observatory. The 
IRC framework will enable astronomers, instrument 
designers, hardware engineers, and other scientists to define 
new instruments, control these instruments remotely, and 
monitor vital instrument telemetry over an intranet or for 
trusted users, the Internet. 
 
IRC is a platform independent framework, designed to be 
generic and extensible so that it can be applied to any 
instrument capable of being computer controlled. In order to 
design an extensible and flexible architecture, the 
established goals of the IRC project are to: 

 1



 
• Provide as much platform independence as 

possible. 
• Create a system that is easy to develop, maintain, 

and extend. 
• Explicitly promote reuse by design and utilize 

emerging technologies that facilitate software 
reuse. 

• Greatly reduce the implementation time for facility 
instruments, which must be reliable, robust, state-
of-the-art, and easily used by scientists other than 
the instrument's designers. 

• Clearly define the interface between hardware and 
software engineers. 

• Facilitate multiple iterations of the instrument 
description during design and implementation by 
means of a software architecture that is readily 
adaptable to such changes. 

• Cleanly separate implementation from description. 
 
 2. INSTRUMENT MARKUP LANGUAGE  
Working with instrument engineers and scientists in the 
astronomy domain (and infrared instruments in particular), 
the Instrument Markup Language (IML) was developed as a 

means to describe an instrument. IML is a vocabulary of the 
Extensible Markup Language (XML), a W3C standard. An 
IML schema enables an XML parser to validate the XML 
files, thereby guaranteeing that the instrument description is 
complete and correct according to the content constraints of 
the schema definition. A key aspect of the IRC architecture 
is that the software is driven by the IML instrument 
description. The attributes of an instrument that can be 
described by IML include: 
 

• Instrument subsystems 
• Logical command set 
• Command arguments (including data types, valid 

values/ranges, and units) 
• Command formats 
• Logical data streams (e.g., science data, 

housekeeping, command responses) 
• Data field types (including data types, valid 

values/ranges, and units) 
• Data formats 
• Communication mechanisms 
• Documentation 
 

Although at this stage in the evolution of IML it is primarily 

Instrument Proxy

Pipeline Manager

Command and
Response
Dispatcher

Subsystem Instrument Proxy
Subsystem Instrument Proxy

Telemetry
Parser

Command
Formatter

Formatted
CommandsRaw

Telemetry
Stream

Script

Instrument

Pipeline Element

QuickLook

Y-
Ax

is

X-Axis

Pipeline
Element

Archiver

Pipeline
Element

Algorithm
Java

Pipeline
Element

Algorithm

IDLNative
Code

Pipeline
Algorithm
Markup

Language
(PAML)

Instrument
Markup

Language
(IML)

GUI

23.0

CancelOK

Command
Objects

Command
Objects

Command
Objects

Response
Objects

Data
Objects

Data
Objects

Data
Objects

Data
Objects

Command
Objects

Figure 1 – High Level IRC Framework Architecture 

 2



the software engineers who are writing the descriptions, the 
IRC team envisions the hardware engineers taking on this 
task. Not only do hardware engineers know the instrument 
details the best, but they traditionally provide significant 
contributions to formal Interface Control Documents (ICD). 
The IML documents can serve a similar role – that is, 
communicating the intricate details of an instrument’s 
operation – in a much more structured, formal, and easily 
manipulated way. Using IML in ICDs will require that 
hardware engineers are provided with software tools that 
hide the details of XML syntax. By utilizing an XML editor 
with a sufficiently self-explanatory IML Schema, hardware 
engineers can be guided through the process of instrument 
specification by noting what elements are applicable in a 
certain context based on the schema’s content model. The 
IRC Configuration Editor application is an initial 
implementation of this IML specific editor. 
 
Although IML is currently applied primarily to astronomical 
instruments, the key aspects of our approach to instrument 
description and control apply to many domains, from 
medical instruments (e.g., microscopes) to printing presses 
to machine assembly lines. Due to the extensible nature of 
XML, we can easily imagine dialects of IML for various 
domains, such as the Astronomical Instrument Markup 
Language (AIML). Currently, there is no separate AIML 
Schema. The generic IML Schema provides all of the 
necessary functionality. But a separate AIML Schema could 
be created if needs were identified which were not met by 
the general instrument description solution. The IML (or 
AIML) Schema can be extended to support new instrument 
requirements, often without requiring changes to previously 
written instrument descriptions. 
 
 3. FRAMEWORK ARCHITECTURE 

The high level architecture of the IRC framework is shown 
in Figure 1. The IML file drives the behavior of many 
general Java objects including the Graphical User Interface 
(GUI), plug-in algorithms, and instrument models. 
 
A default GUI is provided with IRC.  It automatically 
creates a command panel upon reading the IML instrument 
description. This default GUI provides the means to issue 
all of an instrument’s (and its subsystems') commands. 
Since the IML file describes all of the arguments (including 
the arguments' data types and valid values), the GUI can 
present a command window that enables a user to issue 
valid commands. 
 
The Instrument Proxy creates objects that know how to 
communicate directly with the instrument. The IML 
instrument description specifies the communication 
mechanism (e.g., TCP/IP, Serial) and the formatting rules 
for commands. IML can describe a hierarchy of sub-
instruments, and each subsystem (sub-instrument) may use 
a different communication mechanism or protocol. For 
example, one subsystem may have a TCP/IP interface with 

binary commands and another subsystem may have an 
RS232 interface with ASCII commands. Each subsystem in 
the IML instrument description is represented by its own 
Instrument Proxy, which receives command objects, 
formats them according to the rules specified in the IML 
file, and then sends them to the actual instrument. 
 
The flow of command and data objects through the system 
is managed using a Publish/Subscribe pattern. Subscribers 
register with publishers for objects that they are interested 
in - either for all objects published, or for just those objects 
that match particular criteria. This facilitates a dynamic and 
distributed flow of control. Instrument proxies subscribe to 
receive commands from a singleton Command Dispatcher. 
GUIs can come and go based on user demands. A GUI 
publishes commands via the Command Dispatcher, which 
in turn publishes them to the interested instrument proxies. 
This isolates the proxies from the transient nature of the 
GUIs. 
 
The Instrument Proxy also creates a Parser object for each 
instrument port that will be receiving telemetry as defined in 
the IML file. The parsing rules described in the IML file 
define how raw data is parsed into Data Objects. Many of 
the generic framework objects allow the IML instrument 
description to specify instrument-specific delegates. For 
example, the SPIRE instrument had four subsystems, which 
produced six different telemetry streams. The formats of 
five of the telemetry streams could be described such that 
the generic telemetry parsing engines could parse those 
streams directly. However, the generic parsing engine could 
not handle the science data stream. The format of the data 
was extremely complex, and the performance requirements 
were significant – the software had to handle relatively high 
data rates of up to 30 MBps. A parser highly optimized for 
this data was implemented and tuned to the demands of the 
SPIRE science data stream. The parsing delegate was 
specified in the IML instrument description. At runtime, the 
Instrument Proxy created an instance of this delegate, and 
plugged it into the science data port. Java's ability to load 
classes dynamically makes it straightforward for the generic 
framework to perform instrument-specific operations 
without having prior knowledge of the delegate classes. 
 
Figure 1 shows the data analysis pipeline in the lower right. 
The data analysis pipeline allows the users to specify 
algorithms that operate on the data in real time for quick 
look analysis of the data during operations. IRC is delivered 
with a set of algorithms, but users are allowed to specify 
new algorithms at run-time. Again, this is accomplished 
through Java’s ability to dynamically load classes at run-
time. Section 5 describes the data analysis pipeline in more 
detail 
 
IML Examples 

This section includes some examples that illustrate how a 
typical instrument is described using IML.  Note that much 

 3



of the detail is omitted from these examples for presentation 

purposes.  Consider an instrument named HAWC that 
contains four subsystems: Detector, ADR, Optics, and 
Telescope. 

Now let’s examine a sample command from the Telescope 

subsystem, see Figure 3. The Secondary command has five 
arguments. The Chopper Throw argument is specified as a 
float and is the only required argument for this command. It 
is represented by a text field in the GUI, see Figure 4. Since 
the argument has a range constraint specified the GUI 
checks that the user input is within the range and of the 
correct type, displaying an error dialog if it is not. The Chop 
Qualifier argument is of type String and specifies a List 
Constraint for the acceptable valid values. The GUI 
represents the valid choices from the List Constraint as a 
pop-up menu. 

<Instrument id="HAWC"> 
<Instrument id="Detector"> … </Instrument> 

 <Instrument id="ADR"> … </Instrument> 
 <Instrument id="Optics"> … </Instrument> 
 <Instrument id="Telescope"> 
      <!-- Command and Data descriptions go here (see Figure 5) --> 
  <Port name="Telescope" portType="TCP" encodingType="RegExp"> 
   <Parameter name="hostname" value="telescope.gsfc.nasa.gov"/> 
   <Parameter name="number" value="4055"/> 
   <Parameter name="serverPort" value="true"/> > 
   <!-- Command and Data formats go here (see Figure 7) --> 
  </Port> 
 </Instrument> 
</Instrument> 

Figure 2 - IML Description of Instrument and Subsystems 

 
A subsystem can have multiple ports; for example, there 
may be a need for a commanding port and a telemetry port. 
The IML fragment in Figure 2 states that the Telescope 
subsystem has a single TCP port for commanding, and by 
examining the port element we see that commands are 
formatted using a Regular Expression Formater (RegExp). 
In addition to the TCP port, the framework supports several 
other communication mechanisms such as RS232 and 
Direct Memory Access. The architecture allows support for 
additional protocols to be added easily. 

 
Each command has an associated format, specified in the 
IML, which describes how it should be formatted for 
transmission to the instrument. Based on our sample  

<Command name="Secondary" abbreviation="secondary" 
 docHelp="This command controls the chopping  
 secondary mirror."> 
 <Field name="Chopper Throw" type="Float" required="true" default="120.0" instrumentUnit="arcsec" 
   docHelp="Specifies the separation of the beams on the sky"> 
  <RangeConstraint low="0.0" high="540.0"/> 
 </Field> 
 <Field name="Chop Frequency" type="Float" required="false" default="4.0" instrumentUnit="Hz"> 
  <RangeConstraint low="0.0" high="5.0"/> 
 </Field> 
 <Field name="On Tolerance" type="Float" required="false" default="10.0" instrumentUnit="arcsec"/> 
 <Field name="Off Tolerance" type="Float" required="false" default="10.0" instrumentUnit="arcsec"/> 
 <Field name="Chop Qualifier" type="String" default="none" required="false"> 
  <ListConstraint name="Parameter"> 
   <Choice value="STOP"/> 
   <Choice value="DEBUG"/> 
   <Choice value="RELOAD"/> 
   <Choice value="none"/> 
  </ListConstraint> 
 </Field> 
</Command> 

Figure 3 - IML Description of Telescope Secondary Command 

 4



Command and Format, see Figure 5, a Secondary Command 
sent to the Telescope subsystem will be formatted as 
follows: 
 

SECONDARY 120.0 4.0 10.0 10.0 /RELOAD<cr> 
 
While there are many advantages to using IML, one of the 
most significant is the ability to defer some of the hardware 

implementation details as long as necessary during the 
development period. Software often needs to be developed 
in parallel with the hardware it is to control. Since hardware 
engineers may need to change various details as their 
subsystems are integrated, or as new hardware components 
with different characteristics are manufactured, it is crucial 
that the software architecture provide a degree of separation 
between the objects that represent the system and the 
hardware nuts-and-bolts. 
 
IML enables iterative development because the instrument 
description is read at runtime.  A concrete example of this is 
the ability to dynamically alter the GUI to reflect a different 
hardware interface. For example, suppose the hardware 
engineer decides that he wants to make available a new 
Telescope Command.  He can simply define his new 
command and its format in the IML file, and the next time 
the application is started, the new command will appear in 
the GUI. No new code must be written, nor is recompilation 
necessary. 
 
 4. DISTRIBUTED ARCHITECTURE 
Section 3 described the internals of the IRC Framework and 
how an IML description is used to communicate with an 
instrument. With a distributed environment we need to take 
a broader view of an IRC architecture based on multiple 
instances of the IRC framework. A single IRC instance can 
use IML descriptions in two different contexts. The first as 
outlined in the previous section is a description of the 
private interface to an instrument that this device will be 
communicating with. The second context is a description of 
a device’s own public interfaces that other external clients 
can use to communicate with it. 

Figure 4 - Generated GUI for Secondary Command 

 
The IRC framework provides the ability to dynamically 
discover and communicate with other devices anywhere on 
a network in a peer-to-peer manner. To enable a dynamic 
discovery and configuration capability for a collection of 

<Port name="Telescope" portType="TCP" encodingType="RegExp"> 
 <!—Port parameters go here -> 
 <Format name="commandFormat" formatType="command"> 
  <Parameter name="template" value="command { white fieldValue } term"/> 
  <FormattedInterface name="Command"> 
   <CommandInterfaceReference reference="CI1"/> 
   <ValueMap name="Secondary" value="SECONDARY" type="String"/> 
   <ValueMap name="none" value="" type="String"/> 
   <ValueMap name="STOP" value="/STOP" type="String"/> 
   <ValueMap name="RELOAD" value="/RELOAD" type="String"/> 
   <ValueMap name="DEBUG" value="/DEBUG" type="String"/> 
  </FormattedInterface> 
 </Format> 
 <TypeFormat name="String" format="%s"/> 
 <TypeFormat name="Float" format="%f" /> 
</Port> 

 5
Figure 5 - IML Description of Telescope Secondary Command Format 



devic
can a
virtua
comm
netwo
be di
leave
instru
 
An I
IML 
its pu
more
capab
interf
for m
diver
 
Exam

        
4 IRC
peer-
http:/
proto
peers
 

HAWC
Data

Publisher

Engineer
Station

Science
Station

Education
Station

HAWC

ADR

Thermal

Optics

Calibrator

Telescope

Detector

TCP/IP

TCP/IP

RS232

RS232

TCP/IP

DMADetector
Computer

Master
Computer

House Keeping
Computer

SOFIA
Computers

HAWC Instrument
Peer Group HAWC Subsystem Peer Group  

 
Figure 6 - HAWC IRC Device Architecture 
The HAWC instrument will be a facility instrument for 
NASA’s SOFIA mission, a Boeing 747SP aircraft modified 
to accommodate a 2.5m reflecting telescope. The HAWC 
control and monitor software will be configured in 
distributed hierarchal peer architecture as illustrated in 
Figure 6. 

es, each IRC instance (referred to as an IRC Device) 
dvertise and publish information about itself on a 
l network4. A virtual network allows devices to 
unicate and organize independently from the physical 
rk. For scoping and security the virtual network can 
vided into virtual peer groups. Devices can join or 
 a virtual peer group and thus join or leave the 
ment control environment of IRC.  

 
Each of the subsystems (ADR, Thermal, Optics, etc.) will 
have dedicated IRC devices to control them and function as 
subsystem proxies. The proxies will primarily encapsulate 
and perform subsystem specific functions and advertise the 
subsystem on the network to a “HAWC Subsystem” peer 
group. The type of specific functions that each proxy may 
perform includes but is not limited to closed loop control, 
data translation or calibration, and command translation. 
The “HAWC” IRC Device will join the “HAWC 
Subsystem” peer group as a trusted peer and request the 
published IML interface for all subsystems. The “HAWC” 
device will also join a “HAWC Instrument” peer group and 
publish its IML interface to the group. Astronomers and 
engineers will be able to start client IRC Devices anywhere 
on the network, join the “HAWC Instrument” group, and 
request the public IML description from the “HAWC” 
device. The “HAWC” device may publish more than one 
version of the interface depending on the type or 
authorization of the user. 

RC Device can advertise and publish several public 
interface descriptions. A device may want to split up 
blic descriptions (commanding vs. data) or publish 

 than one version (novice vs. expert). This simple 
ility of dynamically publishing and subscribing to 
aces enables a very flexible self-adapting architecture 
onitoring and controlling complex instruments in 

se environments 

ple Distributed IRC Architecture 

                                                   
 recently transitioned from an in-house developed 

to-peer framework called WorkPlace to JXTA (see 
/www.jxta.org). JXTA defines a set of open XML 
cols for finding and organizing a virtual network of 
.  

6

http://www.jxta.org/


<Instrument name="HAWC"> 
 <InstrumentPeer group=”HAWC Subsystem” description="Optics"/> 
 <InstrumentPeer group=”HAWC Subsystem” description="ADR"/> 
 <InstrumentPeer group=”HAWC Subsystem” description="Thermal"/> 
 <InstrumentPeer group=”HAWC Subsystem” description="Calibrator"/> 
 <InstrumentPeer group=”HAWC Subsystem” description="Detector"/> 
 <InstrumentPeer group=”HAWC Subsystem” description="Telescope"/> 
</Instrument> 

Figure 7 - IML Description of Instrument and Subsystems 
Distributed IML Examples 

The IML examples in section 3, show port definitions with 
specific IP addresses in the IML for the Telescope IRC 
Device.  Using the distributed architecture of IRC, these 
descriptions can be much more independent of the physical 
location of the devices. Figure 7 shows a simplified view of 
the previous definition.  The dynamic discovery 
mechanisms of IRC are used to find the IML associated 
with each subsystem. With this approach, the HAWC 
instrument can be unaware of the physical location of the 
other peers on the network.  It simply knows the names of 
the peers.  Other variants of this allow for IRC to search for 
all peers in a particular group or for all peers of a particular 
name, regardless of the group. 
 
For the HAWC instrument the environment changes as do 
the control needs when the instrument is rolled on the 
airplane verses a test lab before flight. One example of this 
is the Telescope description the software will receive on the 
airplane will describe how to communicate with the actual 
telescope, on the ground in the lab the description could be 
for a Telescope simulator or some other piece of test 
equipment.  
 
 5. DATA ANALYSIS PIPELINE 
After parsing a raw telemetry stream, the Parser publishes 
the telemetry as Data Objects. Any subscriber in the system 
can register to receive these Data Objects; however, the IRC 
framework includes a Data Analysis Pipeline to facilitate 
the processing of this data. This real-time pipeline is 
composed of Pipeline Elements that are linked together, i.e. 
the inputs of one pipeline element are transformed and their 
output becomes the input to the next element in the pipeline. 
Examples of pipeline elements are as follows: 
 

• General purpose data processing algorithms, such 
as parameterized algorithms that apply a scale 
factor or polynomial function to selected input data 

• Instrument specific data processing algorithms 
• Data recorders (for archiving data) and players (for 

reading archives) 
• Data visualizations 
• Data analysis scripts for autonomous commanding 

Pipeline Element types are described using the Pipeline 
Algorithm Markup Language (PAML), another dialect of 

XML. With PAML, you must define the following 
attributes of a Pipeline Element: 

• Type name – this is used by IRC to look up a Java 
class that implements the algorithm. 

• Outputs – the characteristics of the output of the 
Pipeline Element 

• Inputs – the characteristics of the input to the 
Pipeline Element 

• Properties – a set of attributes that can be used to 
configure the Pipeline Element 

Based on the PAML description, IRC provides three 
mechanisms for connecting Pipeline Elements together and 
setting Pipeline Element properties:  

• The default GUI.  The GUI presents the algorithm 
types and allows the user to establish the 
connection at run-time.  

• Pipeline Configuration file. Pipeline configurations 
can be saved to a file.  They can be loaded as part 
of the startup sequence of IRC or manually through 
the GUI.  

• Scripted control. A script in JPython, Javascript, or 
other scripting language can be supplied to IRC as 
part of the startup sequence to establish the 
pipeline.  See section 6 for more information about 
scripting. 

 
IRC provides many general-purpose algorithms, and aims to 
make it easy to develop instrument-specific algorithms. 
Taking advantage of Java's dynamic class loading, the IRC 
framework does not have to know about the algorithm 
implementation class until runtime; by referencing the 
location of the Java byte code, the pipeline manager is able 
to create instances of pipeline algorithms as needed. Also, 
by using the Java Native Interface (JNI), algorithms can be 
implemented in any native language such as C, C++, or 
FORTRAN. 
 
Data Visualizations 

The IRC software provides several visualizations that can 
be added to the Pipeline as Pipeline Elements.  
Visualizations are special purpose Pipeline Elements. This 
design affords the IRC software some important flexibility. 
Since a visualization is a Pipeline Element, it may be placed 
anywhere within the pipeline. This enables a user to view 

 7



 
Figure 8 – Visualization Examples 

raw data early in the pipeline, or the results of complex 
calculations performed by a series of Pipeline Elements – or 
both. The framework does not restrict the user to a single 
visualization. A user may place several visualizations at 
various points in the pipeline, providing the ability to 
monitor data at many stages of analysis simultaneously. The 
implementation also allows a visualization to publish 
information, such as statistical or snapshot data, to other 
parts of the pipeline for archiving or further processing. 
 
 6. SCRIPTING 
The ability to write scripts to embed in the instrument 
control software is an important feature of the IRC 
framework. It provides the user with a way to sequence 
common tasks. Currently, scripts must be written in Jpython 
or JavaScript; however, the IRC architecture allows for 
support of any scripting language that supports the Bean 
Scripting Framework. Jython is a Java implementation of 

Python, an interpreted, object-oriented programming 
language. Jython and Python are free and the source code is 
available under an Open Source license. 
 
A script that configures or commands an instrument can be 
written easily. Such a script is shown in Figure 9. A script 
can also prompt the user for input, and can add, remove, 
and configure Pipeline Elements. Support for looping and 
control flow is included. Using more advanced capabilities 
of Jython, a script can extend the IRC framework in 
interesting ways. Jython has full access to all Java packages 
and Python modules and can extend Java objects. These 
features have been used to create scripts that implement 
pipeline algorithms that insert themselves into the pipeline, 
issue commands based on the analysis of incoming data, 
and then remove themselves from the pipeline. 
 
To make a script available to the system, a fragment of IML 
must be created that describes the script, its arguments 
(including data types and valid values), and any 
documentation for the script. The IML fragment shown in 
Figure 10 can be added to a library of scripts or to the 
description of a subsystem to make the script appear as a 
primitive command to the user. The Command Procedure 

sendCommand(SPIRE, "Stop Data") 
sendCommand(SPIRE, "Reset Time Counter") 
sendCommand(SPIRE, "Reset Command Counter") 

Figure 9 - Sample Script 
 8



 
 
 
 
 
 
 
 
 

<CommandProcedure name="Setup FFCP Frame" allowSynchronous="false" abbreviation="setupFrame" 
 filename="detector/setupFrame.py" language="JPython"> 
 <Field name="Column Mask" required="false" type="BitArray" abbreviation="mask" default="0001"> 
  <BitRangeConstraint level="instrument" signed="false" numBits="4" low="0" high="16" /> 
 </Field> 
 <Field name="Number of Rows" required="false" type="Integer" abbreviation="numRows" default="8"> 
  <RangeConstraint level="operational" low="1" high="32" /> 
 </Field> 
 <Field name="Row Select Frequency" required="false" type="Float" instrumentUnit="kHz"  
  abbreviation="freq" default="100.0"> 
  <RangeConstraint level="operational" low="4.0" high="3200.0" /> 
 </Field> 
</CommandProcedure> 

Figure 10 - Command Procedure Description 
Manager as shown in Figure 11 can be used to create the 
initial IML script fragment and dynamically add and edit a 
script at runtime.  
 
 7. THE VISION: THE FUTURE OF IRC 
The IRC framework that we envision can be applied to any 
or all phases of the science life cycle to maximize the 
science potential of missions. An important enhancement to 
the IRC framework will be to provide the ability to quickly 

develop simulations that accurately model instrument
operations with whatever degree of fidelity is deemed
necessary. Simulations allow many activities to be
performed long before instrument development has been
completed. Instrument designers can develop, validate, and
modify designs quickly and efficiently. Scientists can begin
science planning and data analysis algorithm development;
data archival, retrieval, and publication scenarios can be
worked out; and support staff can begin training for
Figure 11 – Command Procedure Manager 

 9



instrument operations very early in the program. The 
underlying open software infrastructure that we envision 
will enable single and multiple discipline behavior models 
to be assembled and synthesized into instrument simulations 
to facilitate the rapid design and development of next 
generation instrument designs and operations. 

To apply the IRC software to one or more instruments, the 
activities involved include the following: 

1. Develop the instrument description. This involves 
mapping the ICDs from each of the instrument 
subsystem teams, including the ICD for the telescope, 
into an IML description for the subsystem.  2. Develop any instrument-specific real-time pipeline 
algorithms and PAML descriptions. The IRC framework of the future will maximize the ability 

to incorporate emerging technologies. The design supports a 
high degree of configurability, allowing it to be tuned for 
specific observatories or other factors. Processes can be run 
on a single computer or on multiple heterogeneous 
computers, ranging from small, low cost hardware 
components to high-end workstations. Processes can be run 
either at the observatory or remotely over the Internet (or 
both). This provides an instrument development team the 
flexibility to use the hardware components that best fit the 
operating environment and instrument requirements. The 
framework will support the cross-platform migration of 
functions and necessary reconfiguration if these 
requirements change. This flexibility enables a design in 
which small, embedded software components are placed at 
the point of origin of the generated data (smart sensors) and 
at the point of device control (smart actuators). The 
envisioned configurable software framework will enable 
these software solutions to be easily developed, enhanced, 
maintained, and reused for different devices, different 
instruments, and different domains 

3. Develop custom GUIs or GUI descriptions for the 
various instrument users. 

4. Develop any new visualizations. 
5. Develop instrument-specific scripts. 
6. Develop any instrument-specific delegates (for special 

purpose parsing or response handling). 

To minimize software development time and to 
accommodate new instruments, the IRC framework will 
make it easy to accommodate large portions of the 
instrument control application automatically from a formal 
description of the instrument. This instrument description 
will be used to create customized GUIs, software 
component interfaces, specific component configurations, 
and documentation. Existing XML Software tools can be 
used to help instrument designers develop descriptions of 
instruments. Thus, as new instruments are added to a 
system, or as specifications for existing instruments are 
modified, the effort to adapt the software to these changes 
will be incremental rather than major. 

 
 REFERENCES  Next Steps 
[1] Instrument Remote Control Project Web site. 
http://aaaprod.gsfc.nasa.gov/IRC The near-term efforts of the IRC team fall into two main 

categories:  (1) Enhancing and improving the general IRC 
framework, including incorporating lessons learned from 
applying it to existing NASA instruments; and (2) using the 
IRC framework to develop the instrument control and 
monitoring software for HAWC, SAFIRE, and SHARC II.  

 
[2] HAWC Yerkes Observatory Web site. 
http://astro.uchicago.edu/hawc/hawc.htm 
 
[3] T. Ames. Instrument Markup Language [Online]. NASA 
Goddard Space Flight Center. Available: 
http://aaaprod.gsfc.nasa.gov/IRC/iml/index.cfm, February, 
2000. 

Currently, the IRC framework provides a default GUI that 
enables a user to issue every command and script defined in 
the IML. This type of GUI is appropriate for an 
instrument’s engineering test phase, but is not as useful for 
general instrument operations. We have always intended to 
have a way to customize the GUI. We have prototyped 
using Java’s 1.4 long-term persistence API in order to allow 
instrument teams to specify customized GUIs in XML.  The 
next step is to expand on this prototyping effort so that 
instrument specific or even task specific displays can be 
described in XML and dynamically published and created. 

 
[4] The Source for Java™ Technology [Online]. Sun 
Microsystems. Available: http://java.sun.com/, October, 
2003. 
 
[5] Liam Quin. Extensible Markup Language (XML) 
[Online]. World Wide Web Consortium. Available: 
http://www.w3.org/XML/, October, 2003. 
 
[6] Bean Scripting Framework Web site. 
http://oss.software.ibm.com/developerworks/projects/bsf 

 8. SUMMARY 
 The IRC framework, utilizing descriptions in XML, 

supports instrument development from early design through 
operations and maintenance to minimize software 
development time, minimize development costs, maximize 
reuse of software components, and maximize flexibility of 
instrument architectures.  

[7] Jython Web site. http://www.jython.org/ 
 
 

BIOGRAPHY 
 

 10

http://aaaprod.gsfc.nasa.gov/IRC
http://astro.uchicago.edu/hawc/hawc.htm
http://aaaprod.gsfc.nasa.gov/IRC/iml/index.cfm
http://java.sun.com/
http://www.w3.org/XML/
http://oss.software.ibm.com/developerworks/projects/bsf
http://www.jython.org/


 11

Troy Ames is a Senior Software Engineer with the 
Advanced Architectures and Automation Branch at NASA 
Goddard Space Flight Center.  He has over 20 years of 
software engineering experience, 7 years of Java 
experience, and 5 years of XML experience in applied 
research and development supporting NASA missions and 
scientists.  Current projects include the Instrument Remote 
Control project that demonstrated the feasibility of using 
Java and Web technologies for controlling astronomical 
instruments located at the South Pole, the High-resolution 
Airborne Wideband Camera project (HAWC) for the SOFIA 
airborne observatory, and the autonomous Ocean-
Atmosphere Sensor Integration System sensor web. He 
holds BS degrees in Computer Science / Mathematics from 
University of Idaho and an MS degree in Computer Science 
from Johns Hopkins University.  


